sewage pump station

The excavation depth of sewerage system must not exceed 5 m to avoid:
1 - The excess cost of excavation.
2- Difficult maintenance at deep depth.
3- Difficult installation in the presence of ground water.

Purpose:

1- To rise the sewage from the level of last manhole to the level of the first tank in the wastewater treatment plant (deceleration tank).
2- If the excavation depth exceeds $5 \mathrm{~m}-7 \mathrm{~m}$ (depends on the type of soil) sewage pump station is needed to rise the sewage to a manhole of level 1.2 m) Types of sewage pump station:
Rectangular and circular depends on type of soil and the available area.
Types of pumps:
1- Dry pump.

- Horizontal pump.
- Vertical pump.

2- Submerged pump.
3- Screw pump.

The sewage pump station consists of:

Pumps, wet sump, pumps chamber, and rising main.
1-pumps:

- The discharge of the pump doesn't exceed $300 \mathrm{l} / \mathrm{s}$ and the head of the pump doesn't exceed 90 m .
- The total number of pumps must not be less than 3 pumps (one pump is working and one pump is standing by and the other one is in maintenance).

Types of pumps

Centrifugal pumps

Submersible wastewater pumps

Total head of pump:

$\mathrm{HT}=\mathrm{H}$ static+h friction+h minor Losses +h Losses in P.S
Hstatic = H.W.L - L.W.L
$=$ water level in the decceleration $\operatorname{tank}-$ L.W.L in the wet sump
Friction losses hf
$h_{f}=\frac{4 f l v^{2}}{2 \mathrm{gd}}$
Minor Losses $=10 \%$ of hf
Losses in P.S $=2-5 \mathrm{~m}$.
$\mathrm{Qd}=\mathrm{Qmax}$ (the bigger of Q max summer and Q max winter)

2- Wet sump:

Purpose:

Collects and distributes the wastewater uniformly on the total number of pumps.

Suction well

Suction pipes and the main header

Design criteria:

1 - T at Q max $=5-10$ minutes
T at $\mathrm{Q} \min \leq 30$ minutes
$2-\mathrm{vs} \leq 1.5 \mathrm{~m} / \mathrm{s} \quad$ (velocity in suction pipe)
$\mathrm{vd} \leq 2 \mathrm{~m} / \mathrm{s} \quad$ (velocity in delivery pipe)
$3-\mathrm{d}=2 \mathrm{~m}$
$4-\mathrm{B}=1-3 \mathrm{~m}$
5- The distance between pumps $=1.5-2.5 \mathrm{~m}$
6- $\mathrm{V}=\mathrm{Qd} \times \mathrm{T}$

3- Rising main:

Purpose:

Transmit the wastewater from P.S to the deceleration tank.

Design criteria:

$1-\mathrm{Qd}=\mathrm{Ax} \mathrm{v}$
$2-\mathrm{v}=1-1.5 \mathrm{~m} / \mathrm{s} \quad \mathrm{v} \geq 1 \mathrm{~m} / \mathrm{s}$
3- minimum $\Phi=100 \mathrm{~mm} \quad$ (ductile iron)
$4-n \geq 2$
Dry pump

Submerged pumps

Dry pumps

Example:

For a city of present population 10.000 capita has average water consumption $180 \mathrm{l} / \mathrm{c} / \mathrm{d}$, and planned to be saturated at year 2050 with population 75.000 capita and average w.c. $280 \mathrm{l} / \mathrm{c} / \mathrm{d}$. it is required to design the following parts of its sewerage system as:

- Main collector of this district with invert level (-3.00) from the ground level.
- Pump station wet well \& dry well type
- Force main with length 8.0 km up to WWTP where its ground level is $(+12.00) \&$ the water level in the first tank is above ground by 4.00 m .

For the main collector

$$
\begin{aligned}
\mathrm{Q}_{\text {ave }} & =0.8 \times \frac{\mathrm{pop} \times \mathrm{w} . \mathrm{c}}{24 \times 60 \times 60} \\
& =0.8 \times \frac{75000 \times 280}{24 \times 60 \times 60}=194.44 \mathrm{l} / \mathrm{s}
\end{aligned}
$$

P.F.F. $=1+\frac{14}{4+\sqrt{\frac{\mathrm{pop}}{1000}}}$
P.F.F. $=1+\frac{14}{4+\sqrt{\frac{75000}{1000}}}=2.11$
M. F.F. $=0.2\left(\frac{\text { pop }}{1000}\right)^{0.167}$
M. F.F. $=0.2\left(\frac{75000}{1000}\right)^{0.167}=0.52$

Qave. Summer $=1.2 \times$ Qave

$$
=1.2 \times 194.44=233.33 \mathrm{l} / \mathrm{s}
$$

Qmax summer = P.F.F x Qave summer +Qinf

$$
=2.11 \times 233.33+(10 \% \times 194.44)=511.77 \mathrm{l} / \mathrm{s}
$$

Qave winter $=0.7 \times$ Qave

$$
=0.7 \times 194.44=136.11 \mathrm{l} / \mathrm{s}
$$

Qmin winter $=$ M.F.F x Qmin winter + Qinf

$$
=0.52 \times 136.11+19.44=90.22 \mathrm{l} / \mathrm{s}
$$

Assume d $/ \emptyset=0.75 \quad$ from chart (2) Q max./Qfull. $=0.86$
Q full. $=\mathrm{Q}$ max. $/ 0.86=511.77 / 0.86=595.08 \mathrm{l} / \mathrm{s}$
Assume V min. $=0.6 \mathrm{~m} / \mathrm{s} \rightarrow$ self. Cleaning velocity
Q min. / Q full= $90.22 / 595.08=0.15$
from chart (2) V min/ V full $=0.73$
V full. $=0.6 / 0.73=0.82 \mathrm{~m} / \mathrm{s}$
If we use PVC pipe $\quad n=0.019 \quad \& n$ of chart $=0.015$
Q full of chart x n of chart $=\mathrm{Q}$ full act x n act
Q full of chart $=595.08 \times 0.019 / 0.015=753.76 \mathrm{l} / \mathrm{s}$
V full of chart $=\mathrm{V}$ full act $\times 0.019 / 0.015=1.04 \mathrm{~m} / \mathrm{s}$
From chart (1) with Q full chart \& V full chart

Ø- 36", S = 2.2%
Q max / Q full act=0.86 \& from chart V max./ V full.=1.07
V max. $=1.07 \times 0.82=0.88 \mathrm{~m} / \mathrm{s} \quad<1.5$ o.k.

ii. Pump station

Design of Wet sump:
Q design $\rightarrow Q$ max \& Q min
$Q \max =511.77 \mathrm{I} / \mathrm{s} \times 60 / 1000=30.7 \mathrm{~m}^{3} / \mathrm{min}$
Qmin $=90.22 \mathrm{l} / \mathrm{s} \times 60 / 1000=5.41 \mathrm{~m}^{3} / \mathrm{min}$
$\mathrm{T}=5-10$ minutes (at Qmax)
$\mathrm{V}=\mathrm{Qmax} \mathrm{x} T$
$=30.7 \times 5=153.5 \mathrm{~m}^{3}$
$\mathrm{d}=2 \mathrm{~m}$
Awet $=\mathrm{V} / \mathrm{d}$

$$
=153.5 / 2=76.75 \mathrm{~m}^{2}
$$

Take pump of wet \& dry well type vertical centrifugal pump with Ratio $1 / 3$ wet $\& 2 / 3$ dry.
Total area of sump $=3 \times 76.75=230.25 \mathrm{~m} 2$
$\mathrm{A}=\pi \Phi 2 / 4$
$230.25=\pi \Phi 2 / 4 \quad \therefore \Phi=17.12 \mathrm{~m}$
Check at Qmin:
$\mathrm{V}=\mathrm{Qmin} \mathrm{x}$ T
$\mathrm{T}=153.5 / 5.41=28.37$ minutes < 30 minutes safe
Design of force main
$\mathrm{Q}=\mathrm{A} \times \mathrm{v}$
Take $\mathrm{v}=1 \mathrm{~m} / \mathrm{s} \quad \mathrm{v}=1-1.5 \mathrm{~m} / \mathrm{s}$
$\mathrm{A}=\mathrm{Q} / \mathrm{v}$
$=511.77 / 1000 / 1=0.51 \mathrm{~m} 2$
$\mathrm{A}=\pi \Phi 2 / 4$
$0.51=\pi \Phi 2 / 4 \quad \therefore \Phi=0.81 \sim 0.8 \mathrm{~m}$
V act $=1.02 \mathrm{~m} / \mathrm{s}<2$ o.k.

Pump head
HT=Hstatic+Hfriction+Hminor Losses +HLosses in P.S
Static head $(\mathrm{Hs})=12.00+4+3+0.5+1.75=21.25 \mathrm{~m}$
Dynamic head $=$ friction head loss + secondary loss
$h f=\frac{4 f \mathrm{fl}^{2}}{2 \mathrm{gd}}$
$\mathrm{hf}=\frac{4 \times 0.008 \times 8000 \times 1.02^{2}}{2 \times 9.82 \times 0.8}=16.95 \mathrm{~m}$
Total head $=21.25+16.95+1.695+5=44.9 \mathrm{~m}$

