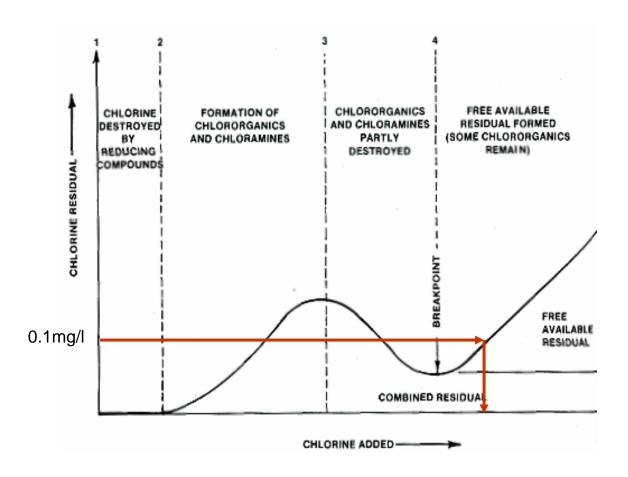
Disinfection

Purpose:


Destroy all bacteria.

Methods of disinfection:

- 1- Heat
- 2- Ultra violet
- 3- Chlorination

Factors affecting efficiency of chlorination:

- Temperature di
- directly proportional
- Ph value
- inversely proportional
- More efficient at pH less than 7.
- Chlorine dose
- Chlorine dose 0.5 1 mg/l is required to give the residual from 0.1 0.3 mg/l.
- Adequate mixing
- Retention period (½ hr)

Injection by Chlorine

4- Ozone (0_3)

The ozone dose is 2 - 3 mg/l.

Advantages:

Ozone kills the bacteria faster than the chlorine

Disadvantages:

- 1- High cost
- 2- It disappeared after 10 minutes, so it doesn't has residual to protect the water networks thus chlorination is better than ozone.

Clear water reservoir (ground reservoir):

Purpose:

- 1- Cover the contact time for disinfection.
- 2- Cover the emergency requirement for 6 8 hr of Qd.
- 3- Cover the difference between max consumption daily and monthly through a day.
- 4- Cover 80% of fire demand (120 240 m3/ 10,000 capita).

Design criteria:

1- $Q_d = Qmax monthly$

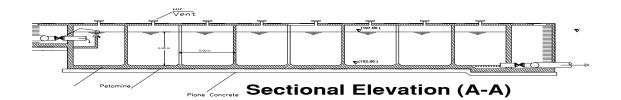
2- Volume = bigger of (V1, V2, V3) + V4

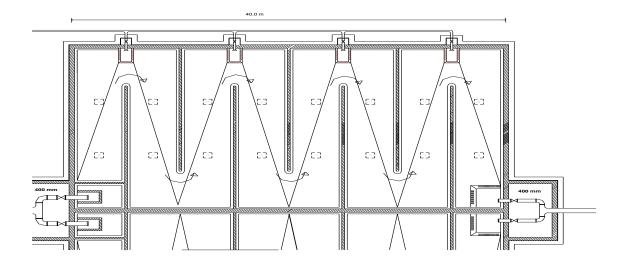
 $V1 = Qd \times 1/2 hr$ for disinfection

V2 = (Qmax daily – Qmax monthly) x 24 hrs

 $V3 = Qd \times 8 hrs$

V4 = 4/5 (120 x pop/ 10,000)


3- No. of tanks ≥ 2


4- $L \le 50$ m and a number devisable by 5

5- B \leq 50 m

6 - d = 2.5 - 6.5

Size (m³)	D (m)
2500	2.5 - 3.5
2600 - 13500	3.5 - 5
13600 – 20000	5 - 6.5

Clear water reservoir

Example:

For a city of population 75,000 capita and water consumption 200 l/c/d. It is required to design ground reservoir. The working hours are 20 hours.

Solution:

$$Q_{ave} = \frac{population \times q_{ave}}{1000}$$

$$Q_{ave} = \frac{75000 \times 200}{1000} = 15000 \quad m^3 / d$$

$$Q_{max monthly} = 1.5 \times Q_{ave}$$

$$Q_{max monthly} = 1.5 \times 15000 = 22500 \quad m^3 / d$$

$$Q_{max daily} = 1.8 \times Q_{ave}$$

$$Q_{max daily} = 1.8 \times 15000 = 27000 \quad m^3 / d$$

 $L = 40 m \rightarrow B = 30.37 \approx 30 m$

Volume:

$$V1(fordisin\ fiction) = Q_d \times 0.5\ hrs$$

$$V1(fordisin\ fiction) = \frac{22500}{20} \times 0.5 = 562.5 \quad m^3$$

$$V2(foremergency) = Q_d \times 8\ hrs$$

$$V2(foremergency) = \frac{22500}{20} \times 8 = 9000 \quad m^3$$

$$V3(Q_{max\ daily} - Q_{max\ monthly}) = (27000 - 22500) \times 1\ day = 4500 \quad m^3$$

$$V4(\frac{4}{5}\ fire\ demand) = \frac{4}{5} \times 120 \times \frac{75000}{10000} = 720 \quad m^3$$

$$V = 9000 + 720 = 9720 \quad m^3$$

$$Take\ d = 4m \qquad , n = 2$$

$$Area = \frac{9720}{2 \times 4} = 1215 \quad m^2$$