Water supply works

Water supply works consists of three main stages:

- 1- Collection works.
- 2- Purification works.
- 3- Distribution works.

Collection works for surface water

Collection works consists of:

- 1- Intake and intake conduit.
- 2- Sump.
- 3- Low left pumps.

1- Intake

It is a structure for suction the raw water from its source to the water treatment plant.

Types of intakes:

The type of intake depends on:

- 1- width of the water source. Narrow or wide.
- 2- Shore pollution. Polluted or non polluted.
- 3- Depth. Shallow or deep.
- 4- Navigation. Navigable or non navigable.

<u>1- Shore intake</u>

It is used in narrow, navigable water streams and the shore is not polluted.

<u>2- Pipe intake</u>

It is used for wide, navigable water streams and the shore is polluted.

<u>**3- Submerged intake**</u> It is used in narrow, deep canals if the shore is polluted.

<u>4- Tower intake</u>

It is used in canals of fluctuated water levels.

<u>5- Movable intake</u> It is used in temporary and emergency cases.

The factors affecting the choice of the location of intake:

1- It has to be constructed U.S the city.

2- Prohibited area of 150 m U.S the intake and 50 m D.S the intake to avoid pollution.

3- It has to be located at straight segment of the water stream to avoid scoring and silting.

<u>1- Shore intake</u>

<u>1-1- Intake conduit:</u>

Purpose:

To transmit raw water from source to low left pump (L.L.P). Design criteria: 1- Qdesign = Qmax monthly x 1.1 and Qmin x1.1 Qmax monthly = 1.5 x Qave 2- v = 0.6 - 1.5 m/s Maximum velocity ≤ 2 m/s 3- Number of pipes n ≥ 2 4- $hf = \frac{4 flv^2}{2gd}$

f = 0.008l = 30 - 50 m (for shore intake) l = 50 - 100m (for pipe intake)

<u>1-2- Suction well (sump – wet well)</u>

Purpose:

Distribute the raw water uniformly on the total number of pumps.

Design criteria:

1- Length \geq 5 times the diameter of the intake conduit.

- 2- Length = number of pumps x (1.5 2.5).
- 3- width 1 3 m.

4- depth \geq (H.W.L – bed level) – hf + 0.5m

5 - T = 5 minutes

V = Qdesign x T m3 A = V/d m2A = B x L

1-3- Low lift pump

Purpose:

To rise the raw water from the source level to water level in the first tank in water treatment plant.

Design criteria:

Qdesign = Qmax monthly x 1.1

Htotal = Hs + hf + hs

Hs = static head it is the difference between L.W.L. and the water level (W.L) in the first tank in the water treatment plant (W.T.P) ~ 5m above land level.

= (G.L - L.W.L) + 5hf = friction losses

$$hf = \frac{4 f l v^2}{2 g d}$$

Hs = secondary losses

= 10 % hf

 $HP = \gamma \; Q \; HT \; / \; 75 \; \eta$

 $\eta = 0.7$ mechanical efficiency

Electrical horse power (kw/hr) = HP x $1.1 / 1.34 \eta$

 $\eta = 0.9$ electrical efficiency

Example:

It is required to design the collection works for a city of present population 24,000 capita and average water consumption 180 l/c/d. If pumps work 20 hr/d. The source of water is narrow and navigable canal, its dimensions as shown.

R.L (15.00) (13.00) H.W.L (12.00) L.W.L (11.00) (8.00) Solution: Qave = pop x qave $= \frac{24000 \times 180}{1000 \times 20 \times 60 \times 60} = 0.6m^3 / s$ Qdesign = Qmax monthly x 1.1 = 1.5 x Qave x 1.1 = 1.5 x Qave x 1.1 = 1.5 x Qave x 1.1 = 0.7 x Qave x 1.1= 0.7 x Qave x 1.1

Intake conduit $Odesign = A \times v$ (v = 0.6 - 1.5 m/s)Take v = 1 m/sA = Qdesign / v $= 0.99 / 1 = 0.99 m^2$ $A = n \pi \Phi 2 / 4$ Take n = 3 $\therefore \Phi = 0.64 \sim 0.6 \text{ m}$ vact = Qd / Aact $= 0.99 / 3 \pi (0.6) 2 / 4 = 1.167 \text{ m/s}$ <1.5 and >0.6 safe When one pipe is broken vmax ≤ 2.5 m/s $vmax = Qd / (n-1) \pi \Phi 2 / 4$ $= 0.99 / 2 \pi (0.6) 2 / 4 = 1.75 \text{ m/s}$ <2.5 safe At Qmin

vmin = Qmin / n
$$\pi \Phi 2 / 4$$

= 0.46 / 3 $\pi (0.6)2 / 4 = 0.54$ m/s <0.6 unsafe
Close one pipe at the months of Qmin
vmin = Qmin / (n-1) $\pi \Phi 2 / 4$
= 0.46 / 2 $\pi (0.6)2 / 4 = 0.81$ m/s >0.6 safe
L.L.P
Htotal = Hs + hf + hs
Hs = (G.L - L.W.L) + 5
Hs = (13 - 11) + 5 = 7 m
 $hf = \frac{4 f l v^2}{2g d}$
 $hf = \frac{4 \times 0.008 \times 50 \times (1.167)^2}{2 \times 9.81 \times 0.6} = 0.18m$
hs = 10 % hf
= 0.1 x 0.18 = 0.018 m
HT = 7 + 0.18 + 0.018 = 7.198 m

<u>Sump</u>

 $\overline{V} = Qd x T$ = 0.99 x 5 x 60 = 297 m3 V = B x L x dd = H.W.L - bed level - hf + 0.5= 12 - 8 - 0.18 + 0.5 = 4.32 m $B = 1 - 3 m \qquad take B = 2m$ L = 297 / 2 x 4.32 = 34.375 m

Chick:

Length \geq 5 times the diameter of the intake conduitL = 5 x 3 x 0.6 = 9 msafe

