Sanitary Engineering

Water supply Sewerage system

Preliminary studies of water supply

- 1- Sources of water.
- 2- Design period (20 50 years).
- 3- Population (present and future)
- 4- Water consumption.
- 5- Water quality. (physical, chemical, bacteriological).

1-Sources of water:

- Rain
- Surface water
- Ground water.
- Brackish water.

3-Population

Factors affecting population increase:

- 1-Industrial and commercial activity.
- 2-Transportation facilities.
- 3-War and diseases.
- 4-Immigration.

Curve of population growth

1- Arithmetic method:

- This method depends op_{opulation} the linier increase of population.
- $P_f = P_i + K_a (T_f T_i)$
- P_f : the population in future.
- P_i : the population in present.
- T_f : the design year.
- T_i : the year of known

Example:

Fined the population at year 2030.

Time (years)	P (capita)
1980	20500
1990	22000
2000	26000
2005	29000

Solution:

Time (years)	Р	Δp	Δt	$\frac{\Delta p}{\Delta T}$
1980	20500			
1990	22000	1500	10	150
2000	26000	4000	10	400
2005	29000	3000	5	600

$$Ka = \frac{1}{n} \sum \frac{\Delta p}{\Delta T}$$
$$Ka = \frac{1150}{3} = 383.33$$

Pf = Pi + Ka (Tf - Ti) $P2030 = 29000 + 383.33 (2030 - 2005) = 38583.25 \sim 38584$ capita

Ρ

<u>2- Geometric method:</u>

This method depends on the linier increase of the logarithm of population.

•
$$\ln P_f = \ln P_i + K_g (T_f - T_i)$$

- P_f: the population in future.
- P_i : the population in present.
- T_f : the design year.
- T: : the vear of known

$$Kg = \frac{1}{n} \sum \frac{\Delta \ln p}{\Delta T}$$

Example: For the last example find the population at year 2030 using the geometric method.

Solution;

Time (years)	р	Δt	ln p	$\Delta \ln p$	$\frac{\Delta \ln p}{\Delta T}$
1980	20500		9.928		
1990	22000	10	9.998	0.07	0.007
2000	26000	10	10.166	0.17	0.017
2005	29000	5	10.275	0.11	0.022

 $Kg = \frac{1}{n} \sum \frac{\Delta \ln p}{\Delta T}$

$$Kg = \frac{0.046}{3} = 0.015$$

lnP_f = lnP_i + K_g (T_f - T_i)
lnP_f = ln29000+ 0.015 (2030 - 2005)
P_f = 42194.75 ~ 42195 capita

<u>5- Increasing factor method</u>

$$p_f = p_i (1 + \frac{x}{100})^{(t_f - t_i)}$$

X: increasing factor = 2.4 % - 2.6 %

Example:

Predict the population of a city at year 2026 using increasing factor methodif the population at 1996 was 39000 capita.

Solution:

$$p_f = 39000(1 + \frac{2.5}{100})^{(2026 - 1996)}$$

= 81805.14 ~ 81806 capita.

4- Water consumption

Unite of water consumption Liter/ capita/ day q = total consumption per year/365 x population

Factors affecting the rate of water consumption:

1- Size of community (population).

The per capita use of water increase by 1/10 the percentage increase in population.

- 2- Climate.
- 3- Standard of living.
- 4- Water pressure.
- 5- Quality of water.
- 6- Cost of water.
- 7- Sewerage system.

Consumption for various purposes:

- 1- Domestic consumption. 50%
- 2- Industrial consumption. 15%
- 3- Commercial consumption. 15%
- 4- Public use. 10%
- 5- Losses and waste 10%.

Fluctuation in water consumption

The area under the curve represent the total daily water consumption.

qmax monthly = 1.5 qave qmax daily = 1.8 qave qmax hourly = 2.5 qave qmin = 0.7 qave $Q_{ave} = \frac{population \times q_{ave}}{1000 \times w.p \times 60 \times 60} = m^3 / s$ Qmax monthly = 1.5 Qave Qmax daily = 1.8 Qave Qmax hourly = 2.5 Qave Qmin = 0.7 Qave

<u>5- Water quality:</u> Physical characteristics of water:

- 1- Temperature.
- 2- Odor, taste, color.

- 3- Turbidity < 5 NTU (nephelometric instrument).
- 4- Total dissolved solids 500 1000 mg/l.
- 5- Clarity. (potable, palatable).

Chemical characteristics of water:

- 1- pH 6.5 8.5.
- 2- Iron \leq 0.3 mg/l.
- 3- Manganese ≤ 0.1 mg/l.
- 4- Hardness. (CaCO3 > 150 mg/l)
- 5- Fluoride 0.5 1.5 mg/l.
- 6- Nitrate \leq 45 mg/l.

Biological characteristics of water:

Fecal coli forms, total coli forms, E.coli. The existence of any of coli form bacteria indicates a recent contamination of water.

A microscopic photo of E.Coli bacteria