Final settling tank

Purpose:

- 1- Clarifying the waste water from all suspended matters organic and inorganic.
- 2- Sediment the suspended matters to return a part of it to achieve the oxidization process.

Design criteria: (in case of aeration tank)

Qd = Q + Qr.s m³/dSolid load = 3 kg/m²/hr at average flow
= 8 kg/m²/hr at peak flow

$$A = \frac{Q_d \times MLSS}{Solid load \times 1000}$$

No. of final settling tank (F.S.T) ≥ 2

d = 2.5 - 4.5 m

 $\Phi \le 40 \text{ m}$

 $Hydraulic\ weir\ loading = 100-150\ m^3\!/m\!/d$

Surface loading rate = $16 - 32 \text{ m}^3/\text{m}^2/\text{d}$ at average flow = $40 - 50 \text{ m}^3/\text{m}^2/\text{d}$ at peak flow

T = V / Qd (2 - 3 hrs)

Design criteria: (in case of trickling filter)

 $Qd = Q + QR m^3/d$

T = 1.5 - 2 hr

d = 3 - 3.5 m

No. of final settling tank (F.S.T) ≥ 2

 $\Phi \le 40 \text{ m}$

Hydraulic weir loading = $100 - 150 \text{ m}^3/\text{m/d}$

Surface loading rate = $16 - 32 \text{ m}^3/\text{m}^2/\text{d}$ at average flow

 $=40-50 \text{ m}^3/\text{m}^2/\text{d}$ at peak flow

Example:

A sewage treatment plant of daily discharge 18000 m3. Find the numbers and dimensions of final settling tanks if the secondary treatment is high rate trickling filters if:

- Row sewage BOD5 = 250 mg/l
- Effluent BOD5 = 40 mg/l
- BOD5 removal efficiency of primary sedimentation= 30%
- Recirculation ratio (R) is 1.5 the design flow.

Solution:

$$Qd = Q + QR$$

 $= 18000 + 1.5 \times 18000 = 45000 \text{ m3/d}$
 $V = Qd \times T$ assume $T = 2 \text{ hr}$
 $= 45000 \times 2/24 = 3750 \text{ m3}$
Assume $d = 3.5 \text{ m}$
 $Q = Q + QR$
 $Q + QR$

H.R.T.F

 $Q_R = RxQ_d$

BOD₂

$$A = \frac{V}{d} = \frac{3750}{3.5} = 1071.43 \quad m^2$$

Assume n = 2

$$A = \frac{n \pi \phi^2}{4}$$

$$1071.43 = \frac{2 \times \pi \times \phi^2}{4}$$

$$\phi = 26.12m$$

Chick:

$$S.L.R = \frac{Q_d}{A}$$

$$= \frac{45000}{1071.43} = 41.99 \quad m^3 / m^2 / d \quad un \, safe \, (16 - 32 \, m^3 / m^2 / d)$$

Increase area: $\phi = 29.92m$

Example:

Determine the volume and dimensions of final settling tank after aeration tanks. Which is designed to treat the flow Q = 12000 m3/d. Given the following data:

- MLVSS in aeration tank (X) = 2500 mg/l
- MLSS in return sludge = 8000 mg/l

Solution:

$$\overline{Qd} = Q + Qr.s$$

$$\frac{Q_{r.s}}{Q} = \frac{MLSS}{TSS \ in \ r.s - MLSS}$$

$$\frac{Q_{r.s}}{Q} = \frac{\frac{2500}{0.8}}{8000 - \frac{2500}{0.8}} = 0.64$$

$$Q_{r,s} = 0.64 \times 12000 = 7692.3 \quad m^3 / d$$

$$Q_d = 12000 + 7692.3 = 196923 \quad m^3 / d$$

Chick:

$$SLR = \frac{Q_d}{A} = \frac{196923}{854.7} = 23.04 \quad (16 - 32 \, m^3 / m^2 / d)$$
$$T = \frac{V}{Q} = \frac{2991.45}{196923} \times 24 = 3.65 \, hr \quad (2 - 3 \, hr)$$

Contact tank

Purpose:

Destroy bacteria.

Design criteria:

Chlorine dose = 2 - 10 P.P.M

T = 15 - 20 minutes

 $n \ge 2$

V per tank = $2 \times 1.5 \times$

Chlorine gas

Contact tank

Example:

For the last example design contact tanks.

Solution:

$$Q_d = 120000 \text{ m}^3/\text{d}$$

$$T = 15 - 20$$
 minutes

$$V = Q_d \times T$$

$$V = 12000 \times \frac{15}{60 \times 24} = 125 \quad m^3$$

Assume
$$n = 2$$

$$V_{one} = 2 \times 1.5 \times l \times No. of paths$$

$$\frac{125}{2} = 2 \times 1.5 \times l \times 8$$

$$l = 2.6 m$$