Design criteria of drying beds

- Period of drying = $5 \rightarrow 9$ days
- Thickness of one sludge layer = $10 \rightarrow 15$ cm
- Solid loading rate = $100 \rightarrow 300 \text{ kg/m}^2$.year

Required number of drying beds:

Take Solid Loading = $300 \text{ kg/m}^2/\text{year}$

No. of Drying beds =
$$\frac{Amount\ of\ solids with drawal(kg/d) \times 365(d/year)}{(Solid\ Loadings) \times (area\ of\ dryingbed)m^2}$$

Example:

Primary Sludge Quantities:

Quantity of sludge produced /d assuming 60 % removal of TSS in PST:

- = C_{in} (ss) × % of ss removed per PST × Q_{av}
- $=400 \text{ gm/m}^3 \times 1.0 \text{ kg/}1000 \text{gm} \times 0.6 \times 120,000 \text{ m}^3/\text{d} = 28800 \text{ kg/d}$

Thickened sludge flow rate:

Amount of sludge entering the thickeners = 28800 kg/d.

Solid capture efficiency = $85 \rightarrow 95\% = 90\%$

Amount of solids withdrawal = 0.9 * 28800 = 25920 kg/d

Design of Drying Beds:

Amount of solids withdrawal = 25920 kg

Drying bed dimensions = 10 m * 20 m - 20 m * 20 m

Required number of drying beds:

Take Solid Loading = $300 \text{ kg/m}^2/\text{year}$

No. of Drying beds =
$$\frac{Amount of \ solids with drawal(kg/d) \times 365(d/year)}{(Solid \ Loadings) \times (area of \ drying beds) m^2} = \\ = \frac{25920(kg/d) \times 365(d/year)}{(300) kg/m^2/year \times (20 \times 20) m^2} = 78.84 \approx 80 \ beds$$