Activated Sludge Process Suspended growth reactor

In this type of reactor, reaction between organic matter and bacteria takes place in suspension on the surface of the suspended solids (suspended returned sludge particles).

Purpose:

Stabilize organic matter and make it satiable.

A microscopic photo of the reaction between organic matter and bacteria which takes place in suspension solids on the surface of the suspended

Types of activated sludge process:

- 1- Conventional aeration.
- 2- Contact stabilization.
- 3- Step aeration.
- 4- Extended aeration.
- 5- Oxidation ditch (orbital aeration).

Conventional aeration

Advantages of aeration tanks:

- 1- It does not need large land areas.
- 2- It is more efficient than trickling filters.
- 3- No fly and odor problems occurs around the trickling filter.

Disadvantages of aeration tanks:

1- It can not take shock loads and sudden increase in discharge.

- 2- Needs a supervisor since it is the most complicated systems.
- 3- High cost of construction, operation and maintenance.

Flow line diagram of activated sludge process

Diffused air system of aeration tank

Aeration tank

Factors affecting design of aeration tank:

- 1- Temperature: the biological reaction increase with the increase of temperature.
- 2- MLSS: (mixed liqueur suspended solids) 2000 4000 mg/L MLVSS: (mixed liqueur volatile suspended solids) MLVSS = 0.8 MLSS
- 3- Sludge retention time = T = 4 8 hrs
- 4- Sludge return rate (R) = 0.2 0.3

$$R = QR / Qd$$

Return sludge QR.s = 0.2 - 0.3 Qd

Types of aeration:

- 1- Diffused air system
- 2- Surface aerators

Design criteria:

$$V = \frac{y \times \theta_c \times Q \times (S_0 - S_e)}{X(1 + K_d \theta_c)}$$

Q = discharge influent to the aeration tank (A.T). = $1.5 \times Q_{ave sewage}$ (Q = $0.8 \times 1.5 \times pop \times q_{ave}$)

- S_0 = dissolved BOD₅ influent to the A.T.
- S_e = dissolved effluent BOD₅
- Set = effluent total BOD₅ suspended \rightarrow dissolved
- Xe = suspended solids concentration (S.S)
- inorganic 30% organic 70%

- BOD₅ suspended = $S.S \times 0.7$
- BOD₅ dissolved = total BOD₅ BOD₅ suspended
- $S_e = Set Xe \times 0.7$

X: total number of microorganisms responsible for the stabilization of organic matter.

- X = MLVSS
- MLVSS = 0.8 MLSS
- Θ c = sludge age =5 15 days
- y: cell yield coefficient
- y = gm MLVSS/gm BOD5
- Y observed = $y / (1 + kd \Theta c) = 0.31$
- Kd = decay coefficient = 0.05 day-1
- $\bullet \qquad A = V / d$
- Depth = 3 5 m
- $n \ge 2$
- b = 1.5 2 d
- $L \le 50 \text{ m}$

Checks:

$$F_T / \underline{M}_{Q}^{V} = \frac{Q(S_o - S_e)}{MLVSS \times V} = 4 - 8 hrs F / M = 0.2 - 0.4$$

$$V = \frac{T.O.L}{L}$$

$$L = \frac{S_o \times Q}{V \times 1000}$$

Allowable organic load (L) = $0.3 - 2 \text{ kg BOD5 /m}^3/\text{ day}$

$$R = \frac{Q_{R.S}}{Q} = \frac{MLSS}{TSSinR.S - MLSS}$$

$$\theta_C = \frac{X \times V}{Q_w \times X_r}$$

$$\theta_c = \frac{X \times V}{Q_w \times X_r + X_e(Q - Q_w)}$$

Qw = sludge withdrawal rate

Xr = MLVSS in return sludge

Xe = effluent S.S

Example:

Determine the volume and dimensions of aeration tank and the required air flow for an activated sludge process treatment plant. Which is designed to treat the flow Q = 12000 m3/d and fined overall efficiency, F/M ratio, allowable organic load and the diffused air system. Given the following data:

- BOD5 of primary effluent (So) = 200 mg/l
 - Required effluent BOD5 = 30 mg/l (Set)
- Required effluent suspended solids (Xe) = 20 mg/l
 - MLVSS in aeration tank (X) = 2500 mg/l
 - MLSS in return sludge = 10000 mg/l
 - Cell residence time $(\theta c) = 6$ days
 - Coefficient of decay (kd) = 0.06 day-1
 - Cell yield coefficient (y) = 0.65 gm MLVSS/gm BOD5
 - Efficiency of aeration = 8%

Solution:

$$V = \frac{y \times \theta_c \times Q \times (S_0 - S_e)}{\text{BOD5 dissolved} + \text{RQD5 eff.} - \text{S.Seff x 0.7}}$$

$$\text{Se = Set } - \text{XSet 0.7}$$

$$= 30 - 20 \text{ x 0.7} = 17.45 \sim 17.5 \text{ mg/l}$$

$$\text{Dissolved x 0.7} = 17.45 \sim 17.5 \text{ mg/l}$$

$$\text{Off. organic}$$

$$V = \frac{0.65 \times 6 \times 12000 \times (200 - 17.5)}{2500(1 + 0.06 \times 6)} = 2512m^3$$

Assume
$$d = 4m$$

$$d = 3 - 5 \text{ m}$$

$$area = \frac{V}{d}$$

$$area = \frac{2512.5}{4} = 638.015m^{2}$$

Number of tanks n = 2

Area of one tank =
$$\frac{628.015}{2}$$
 = $314m^2$

b = 1.5 - 2 d take b = 8m

$$L = \frac{A}{b} = \frac{314}{8} = 39.25m \le 50m$$

Checks:

$$F/M = \frac{Q(S_o - S_e)}{MLVSS \times V}$$

$$F/M = \frac{12000(200 - 17.5)}{2500 \times 2512.06} = 0.346 \frac{gmBOD_5}{gmMLVSS.day}$$
 F/M = 0.2 - 0.4

$$T = \frac{V}{Q}$$

$$T = \frac{2512.06}{12000} \times 24 = 5.03 hrs$$

$$T = 4 - 8 \text{ hrs}$$

$$L = \frac{S_o \times Q}{V \times 1000}$$

The design of the return Blodge pipe:
$$R = \frac{Q_{R.S}}{1 \text{ lower briggs in B Sri M less}} (A) = 0.2 - 2.1 \text{ so } 0.2 -$$

 $\overline{All@walb{lesorganionlosed}}$ (L) = 0.3 - 2 kg BOD₅ / in the laws S = 0.8 MLSS

$$\frac{Q_{R.S}}{Q} = \frac{(\frac{2500}{0.8})}{10000 - (\frac{2500}{0.8})} = 0.45$$

$$Q_{R.S} = 0.45 \times 12000 = 5454.5 \, m^3 \, / \, d$$

$$\frac{Q_{R.S}}{24 \times 60 \times 60} = \frac{\pi \phi^2}{4} \times v$$

Determination of excess sludge: $\frac{5454.5}{24\times60\times60}$ $\frac{\pi\phi^2}{4}$

$$\theta_{C} = \frac{0.28 \times 0.03m}{Q_{w} \times X_{r}}$$

$$6 = \frac{2500 \times 2512.06}{Q_{w} \times (10000 \times 0.8)}$$

$$Q_w = 130.83m^3 / d$$

$$\theta_c = \frac{X \times V}{Q_w \times X_r + X_e(Q - Q_w)}$$

$$6 = \frac{2500 \times 2512.06}{Q_{w} \times (10000 \times 0.8) + 20 \times (12000 - Q_{w})}$$

$$Q_w = 126.6m^3 / d$$

Design of diffused air system:

$$P_x = \frac{y_{obs} \times Q \times (S_o - S_e)}{1000}$$

$$P_x = \frac{0.31 \times 12000 \times (200 - 17.5)}{1000} = 678.9 kg / d$$

Theoritical pureoygen(
$$O_2$$
) = $\frac{(S_o - S_e) \times Q \times 10^{-3}}{(\frac{BOD_5}{BOD_U})} - 1.42P_x$

Theoritical pureoygen(
$$O_2$$
) = $\frac{(200-17.5)\times12000\times10^{-3}}{(0.68)} - 1.42\times678.9 = 2256.55kgO_2/d$

$$S \tan dard oxygen required (SOR) = \frac{Theoritical \ pureoygen (O_2)}{0.65}$$

$$S \tan dardoxygen required (SOR) = \frac{2256.55}{0.65} = 3471.61 kg O_2 / d$$

The oritical air demand =
$$\frac{SOR}{1.2 \times 0.232(O_2 ratio)}$$

Theoritical air demand =
$$\frac{3471.61}{1.2 \times 0.232}$$
 = 12469.88kg/m³

$$Actual \, air \, required = \frac{\textit{theoritical air demand}}{\textit{effeciency of oxygen}}$$

Actual air required =
$$\frac{12469.88}{0.08}$$
 = $155873.54m^3 / d$

$$Blowers capacity = 1.5 \times actual air$$

Bresser Cop attity to $\frac{1}{2}$ in $\frac{1}{2}$

 $Head of blowers = 1.3 \times depthof waterinAT$

Head of blowers =
$$1.3 \times 4 = 8.9 \text{m}^2$$

Blower capacity = $\frac{v}{\text{blowers capacity}} \times v$
No. of blowers = $\frac{v}{\text{design capacity of each blower}} = \frac{v}{\text{design capacity of each blower}} = \frac{$

Design of surface aerators:

```
The tical pureoygen(O_2) = \frac{(S_o - S_e) \times Q \times 10^{-3}}{(BOD_5)} = 1.42P_x (\frac{BOD_5}{BOD_5})

P_x = \frac{Y_{obs} \times Q \times (S_o - S_e^2)}{(S_o - S_e^2)} tical pureoygen(O_2) = \frac{(3000 - 17.5) \times 12000 \times 10^{-3}}{(5000 - 17.5) \times 12000 \times 10^{-3}} = 1.42 \times 678.9 = 2256.55 kg O_2 / d

P_x = \frac{0.31 \times 12000 \times (200^{28} 17.5)}{(5000 - 10^{28} 17.5)} \times 12000 \times 10^{-3} = 1.42 \times 678.9 = 2256.55 kg O_2 / d

St. Theoritical pureo3256660 P_x = \frac{(55_o - S_e) \times Q \times 10^{-3}}{(5.65_o - S_e) \times Q \times 10^{-3}} = 1.42P_x

ard oxygenrequired(SOR) = \frac{SOR}{0.65}

Theoritical pureo326(O_x = \frac{(200 - 17.5) \times 12000 \times 10^{-3}}{(0.68)} = \frac{(3471.61 \text{ kg}OD_y)}{(0.68)}

The tical air demand = \frac{3471.61}{1.2 \times 0.232} = \frac{(200 - 17.5) \times 12000 \times 10^{-3}}{(0.68)} = 1.42 \times 678.9 = 2256.55 kg O_2 / d

The tical air demand = \frac{3471.61}{1.2 \times 0.232} = \frac{(200 - 17.5) \times 12000 \times 10^{-3}}{(0.68)} = 1.42 \times 678.9 = 2256.55 kg O_2 / d

The tical air demand = \frac{3471.61}{1.2 \times 0.232} = \frac{(200 - 17.5) \times 12000 \times 10^{-3}}{(0.68)} = 1.42 \times 678.9 = 2256.55 kg O_2 / d

The tical air demand = \frac{3471.61}{1.2 \times 0.232} = \frac{(200 - 17.5) \times 12000 \times 10^{-3}}{(0.68)} = 1.42 \times 678.9 = 2256.55 kg O_2 / d

The tical air demand = \frac{3471.61}{1.2 \times 0.232} = \frac{(200 - 17.5) \times 12000 \times 10^{-3}}{(0.68)} = 1.42 \times 678.9 = 2256.55 kg O_2 / d

The tical air demand = \frac{3471.61}{1.2 \times 0.232} = \frac{2256.55}{0.65} = 3471.61 kg O_2 / d

Total aerators capacity = 2 \times SOR

O_2 / aerator
```